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Abstract. The advent of information age has transformed the focus of enterprise marketing 

from product-centric to customer-centric, and customer relationship management becomes the 

core problem of enterprises. Accurate customer value classification results are an important 

basis for enterprises to optimize marketing resources allocation, and customer value 

classification is becoming one of the key issues that need to be solved urgently in customer 

relationship management. In the face of the fierce market competition of the vehicle-sharing 

industries, each shared transportation company has introduced more preferential marketing 

methods to attract more customers. In this paper, with the aid of the vehicle-sharing platform in 

a domestic university campus, we established a reasonable customer value evaluation model 

called K-LRFMD. K-LRFMD did some clustering analysis with the customers based on 

specific feature engineering and improved K-means algorithm. In this paper, we compare 

different customer value derived from K-LRFMD. The analysis can formulate the 

corresponding marketing strategy to provide personalized customer service for different 

customers. 

1. Introduction 

In recent years, a lot of capital is flocking to make China’s shared transportation filed blustery. Ride-

sharing enterprises such as ofo and mobike and car rental company DiDi accelerate competition of 

traffic market share. Its rapid ascent, universal attention, also explain that people’s a great demand of 

the mass travel. How to use these massive customer data to establish effective communication among 

relevant business units (such as marketing and customer service) about the segmentation and focus 

limited resources on high-value customers to achieve the goal of maximizing corporate profits is the 

current very popular research topic. 

Although some literatures [1, 2] introduce some customer segmentation applied to fields of banking, 

insurance, network account, etc. There is no literature involving shared transportation filed. 

There are a lot of data accumulated in the shared transportation filed. However, these data with 

many attributes is huge, making it difficult to extract valuable information from them. In order to 

ensure the accuracy of customer segmentation, we must choose the correct and reasonable 

classification indicators and classification methods. Currently the most widely-value model identifies 

customers by three indicators (Recent Frequency Monetary), referred to as RFM model [3].Monetary 

represents the sum of the amount of product purchased over a period of time in the RFM model in [4]. 

Due to the factors such as driving distance, promotion activities and other factors affecting the 

business of vehicle-sharing operation, the Monetary is different for different customers with the same 
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consumption amount. Therefore, this indicator does not apply to customer value analysis. [5] proposed 

AFH customer classification model based on the analysis of RFM model and introduced customer 

value matrix model. The model adds an indicator of the average consumption amount, but in essence it 

still doesn’t take any factors such as discount coefficient and mileage into account. In terms of 

classification, clustering analysis is commonly used nowadays. Currently the most widely used 

clustering algorithm is the K-means algorithm [6, 7]. The effect of K-means algorithm proposed in [8, 

9] is greatly influenced by factors such as number of clusters and initial cluster centres. Studies show 

that the influencing factors mentioned above are related to the specific case and subjective experience. 

Therefore, this paper replaces the original consumption amount(M) with the two indicators, such as 

the travel distance(M) accumulated by the customers in a certain period of time and the average value 

of the discount coefficient(D) enjoyed by the customers in a certain period of time. In addition, 

considering the membership mechanism of the vehicle-sharing platform, the length of the joining 

membership can affect the customer value to a certain degree, so the length of the membership (L) is 

added into the model as another indicator for differentiating the customers. In order to solve the two 

shortcomings associated with the initial value of K-means algorithm, this paper will set the number of 

clusters K as 5, and proposed an initial clustering centre selection strategy based on the specific case 

and competent experience. Finally, we evaluated the customer segmentation based on the actual 

application scenario. 

In short, the model we developed called K-LRFMD has the following key features: 

 Special feature engineering: Based on the traditional RFM model, we propose features that are 

more consistent with customer segmentation in the area of vehicle-sharing. 

 Reasonable initial clustering centre selection strategy: We implement a maximum probability 

of selecting initial clustering centre strategy based on Euclidean distance. 

 The vehicle-sharing platform is already in use of the model: Our model has been used in 

vehicle-sharing platform operated in campus of some universities. 

The rest of this article is organized as follows. The second section is an overview of our modelling 

process. The third section details the method we propose. In the fourth part, we systematically evaluate 

the performance of the model based on the actual application scenario. The fifth section is discussion 

and limits of the model. Finally, the sixth section concludes. 

2. Overview of building a K-LRFMD customer segmentation model 

This section will do a brief introduction to the process of building a K-LRFMD customer 

segmentation model. In this paper, five indicators of customer relationship: length L, consumption 

time interval R, consumption frequency F, driving distance M and average discount coefficient D are 

taken as the customer value index of vehicle-sharing platform(see Table 1) and recorded as LRFMD 

model. 

Table 1. Index meaning 

model L R              F                    M           D 

K-LRFMD The number 

of days from 

of the 

Member 

Registration 

Time to the 

end of  the 

observation 

The number 

of days from 

the time of 

customers 

last driving 

to the 

observation 

window 

The number 

of times 

customers 

drive in the 

observation 

window 

Customer 

accumulated 

mileage in 

the 

observation 

window 

The average 

discount 

factor 

enjoyed by 

customers in 

the 

observation 

window 

According to LRFMD, if the traditional binning method of attribute of RFM model is used, as 

shown in Figure.1, it is classified according to the average value of the property, which is bigger than 

the mean value is expressed as ↑, on the contrary is expressed as ↓, although the model can also 

identify the most valuable customers, but the number of the customer segmentation is too much, and 

increase the cost of targeted marketing. Therefore, this paper adopts clustering method to identify 
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customer value. Based on the improved K-means algorithm, five indicators of LRFMD model are 

clustered to identify the most valuable customers. 

 
Figure 1. RFM Model Analysis 

 
Figure 2. The Overall Process of Building K-LRFMD 

The overall process of customer segmentation is shown in Figure.2 and the overall process of 

building K-LRFMD mainly includes the following steps. 

 From the data sources operated by a vehicle-sharing platform in a university, do selective 

extraction and new data extraction to form historical data and incremental data, respectively. 

 Perform Data exploration analysis and pre-processing of two datasets formed in step (1), 

including analysis of missing values and outliers, attribute specification, cleaning and 

transformation. 
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 Based on the modelling data of the completed data pre-processed in step (2), and the improved 

K-means algorithm, apply K-LRFMD model, and analyse the characteristics of each customer 

group to identify valuable customers. 

 According to the results of the model, using different marketing tools to provide customized 

services. 

3. K-LRFMD 

In this section we will detail the specific processes and methods of building a model. 

3.1. Data Extraction 

For the ending time of November 30, 2017, the time window with a width of two years is selected as 

the analysis observation window, and the detailed data of all the customers are taken to form the 

historical data. For the subsequent added customer details, follow up the newest time point in the 

database as the end time, and extract the data in the same way as above to form incremental data. 

From detailed information such as vehicle information and payment records in the database of 

vehicle-sharing platform in a university, the detailed data of all customers from November 30, 2015 to 

November 30, 2017 are extracted based on Last Drive Time of the last driving date, for a total of 

50715 records. Which contains the user ID, driving mileage, points, discounts and other 29 attributes. 

3.2. Data Exploration and Analysis. 

Data exploration and analysis is the analysis of the data missing value and outlier. Through the 

observation of the data, there is a record that the original data has a payment equal 0, a discount equal 

0 and a total mileage more than zero. This phenomenon may generate because of free trial or 

redeeming points of the customer. The partial result of data exploration and analysis is in Table 2. 

3.3. Data Preprocessing 

This paper mainly uses the data cleaning, attribute specification and data transformation pre-

processing method. 

Table 2. Data Exploration Results Analysis Table 
    

Attribute Null value records Maximum Minimum 

User id 0 47042 1939 

Current miles 0 13710 0 

... ... ... ... 

Cost   11 78.1 -29.4 

Car id 0 246 68 

Data Cleaning Through data exploration and analysis, there exist missing value and abnormal 

value less than zero in the Cost and Money attributes. Due to the huge amount of raw data, such data 

occupy a relatively small proportion and have little effect on the result and therefore can be discarded. 

Specific treatment is as follows: 

 Discard missing values 

 Discard value less than 0 in the Cost and Money 

Attribute specification There are too many attributes in the original data. According to the K-

LRFMD model proposed in this paper, the six attributes associated with KLRFMD are selected, 

namely User id, Start time, Load time, Cost, Money, bonus. 

Data transformation The data transformation is to transform the data into an “appropriate” format 

to accommodate the need for mining tasks and algorithms. In this paper, the data transformation 

method is used for attribute construction and data standardization. Since the original data does not 

directly give the five indexes of the K-LRFMD model, the five indexes need to be extracted through 

raw data. The specific calculation methods are as follows: 
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 L = Load time − Start time 

The number of days from the Member Registration Time to the end of the observation window 

[unit: day] 

 R = Last To End 

The number of days from the time of customers last driving a shared car to the observation 

window while [unit: day] 

 F = Drive Count 

The number of times customers drive a shared car in the observation window [unit: day] 

 M = SumCurrentMiles 

Customer accumulated mileage in the observation window [unit: mile] 

 D = Sum Bonus/Count 

The average discount factor enjoyed by customers in the observation window [unit: None] 

   Table 3. K-LRFMD index range 
      

Attribute L R F M D 

MAX 450 448 369 239968 111 

MIN 1 1 1 0 0 

AVG 257.39 168.54 14.57 9308.94 3.87 

After five indicators are extracted, the data distribution of each indicator needs to be analysed. The 

range of the data is shown in Table 3. 

From the data in the table, it can be found that the values of the five indexes vary greatly. In order 

to eliminate the impact of the magnitude of data, the data needs to be standardized. This paper uses Z-

score approach and the result of some data processing is as shown in Table 4. 

Table 4. Normalized data set 
     

ZL ZR ZF ZM ZD 

1.20882776 1.312803469 -0.185458018 -0.554793993 -0.526600821 

0.956659445 1.497281062 -0.347784511 -0.554793993 -0.526600821 

1.249094637 1.83109238 -0.510111005 -0.552708063 -0.322491976 

0.872614763 1.463577819 -0.550692628 -0.554793993 -0.526600821 

-1.581091175 -1.016106791 -0.550692628 -0.554793993 -0.526600821 

1.033287101 1.625940291 -0.510111005 -0.554793993 -0.526600821 

0.847914913 1.43860888 -0.510111005 -0.554793993 -0.526600821 

1.230696342 -0.901523796 1.356643666 -0.091002535 2.085992401 

3.4. K-means improved algorithm 

K-means algorithm k-means clustering is a method of vector quantization, originally from signal 

processing, that is popular for cluster analysis in data mining. K-means clustering aims to partition n 

observations into k clusters in which each observation belongs to the cluster with the nearest mean, 

serving as a prototype of the cluster. This results in a partitioning of the data space into Voronoi cells 

[10, 11]. The problem is computationally difficult (NP-hard); however, there are efficient heuristic 

algorithms [12] that are commonly employed and converge quickly to a local optimum. 

Improve K-means algorithm Two key features that make the K-means algorithm highly efficient 

are also seen as its biggest drawbacks: 

 The number of clusters k is an input parameter. Choosing an inappropriate value of k may 

result in poor clustering results. This is why feature checking is needed to determine the 

number of clusters in a dataset. 
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 Convergence to a local optimal solution may lead to “counter-intuitive” erroneous results. 

An important limitation of the k-means algorithm lies in its clustering model. The basic idea of this 

model is that we get spherical clusters separated from each other, in which the mean points tend to 

converge to the centre of the cluster. It is generally expected that the cluster sizes will be roughly 

equal, so assigning each observation to the nearest cluster centre (i.e. mean point) is the correct 

allocation. 

Improve the initial clustering centre selection method The traditional k-means clustering 

algorithm obtains the last k centres through the initial central iteration. The relationship between the 

final clustering results and the initial clustering centres is still close, and different initial centres may 

get completely different results. [13] proposed the idea of data segmentation to choose the initial 

clustering centre. [14] proposed to determine the initial cluster centres based on distance estimation. In 

[15], K-means++ is proposed to determine the initial cluster centres based on the maximum 

probability. Although the K-means++ algorithm proposed in [16] can definitely initialize the 

clustering centre, it has one shortcoming in the scalability: its inherent ordering property: the choice of 

the next centre depends on Centre of choice. In response to this shortcoming, this paper changes the 

sampling strategy of each traversal based on K-means++, each traversal takes  O k samples, the 

sampling process is repeated about  O logn  times, a total of  O klogn sample points obtained after 

repeated sampling, the set of constant factor approximation of the optimal solution, and then the 

 O klogn points are clustered into k points. 

Table 5. Customer classification situation 
      

ZL ZR ZF ZM ZD num  per 

-1.26534934 -0.93586135 -0.24461487 -0.22321496 -0.68739483 1030 29.59% 

0.56052897 0.81107607 -0.33850695 -0.35428804 -0.01618059 1415 40.65% 

0.6649835 -0.90491723 4.04972263 4.07757598 -0.3143415 108 3.10% 

0.3475817 0.87571874 -0.53503839 -0.46243334 2.44529302 376 10.80% 

0.55734129 -0.75230912 0.89627725 0.84189442 -0.28001647 552  15.86% 

Finally, these k points are sent to Lloyd iteration as the initial cluster centres. The actual 

experiments prove that  O logn  sub-sampling is not needed; 5 times repeat sampling can get a better 

initial centre of clustering. The method is as follows: 

 Randomly select  O k  points from the set of input data points as the cluster centres and 

repeat the sampling five times to obtain a set of ( )5O k  sample points and then cluster them 

into k initial centres point; 

 For each point x in the dataset, calculate the distance  D x  between it and the nearest cluster 

centre (referring to the selected cluster centre), and select a new cluster centre based on the 

maximum probability criterion of Euclidean distance; 

 Repeat step 2 until k clustering centres are found. In step 2, the distance between each data 

point and the nearest seed point (cluster centre) is calculated in turn, and a set D  consist of

     1 , 2 ,...,D D D n . n represents the size of the data set. 

In D , to avoid noise, you cannot directly select the element with the largest value. You should 

select the element with a larger value, and then use the corresponding 

The number of clusters K value selection When using K-means algorithm, it is necessary to 

specify the number of clusters k. The algorithm is based on the field of customer value segmentation 

and can take k as 5 based on engineering experience. 
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Clustering results The K-means algorithm is used to cluster the standardized data including L, R, F, 

M and D, and the clustering results are shown in Table 5 and Figure.3. 

4. Customer Value Analysis 

According to the result of clustering, the characteristic analysis is shown in Figure.4. 

Customer group 1 has the smallest R attribute; Customer group 2 has the largest R attribute; 

Customer group 3 has the largest L, F, M attributes and R attribute is smaller; Customer group 4 has 

the largest D, R attributes. According to the specific business analysis of vehicle-sharing platform, the 

characteristics of a group were evaluated by comparing the size of each index among the groups. For 

example, customer group 3 has the largest attribute L, F, M, and the lowest attribute R, so it can be 

said that L, R, F and M are inferior features in customer group 3. And so on, in order to sum up the 

advantages and disadvantages of each group features, the specific results shown in Table 6. 

The chart analysed by the above characteristics shows that each customer group has significantly 

different performance characteristics. Based on this feature description, the present case defines five 

levels of customer categories: important maintain-customer, important development-customer, 

important retention-customer, general customer, Low value customers. Each customer category is as 

follows: 

 
Figure 3. Cluster Diagram 

Table 6. Customer Group Characteristics Description Table 
   

Group category    Advantageous features Weak features 

Customer group 1 R L  

Customer group 2  R 

Customer group 3 L R F M  

Customer group 4  R F M 

Customer group 5   
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Figure 4. Analysis of Customer Characteristics 

 Important maintain-customer: In general, such customers lower the average discount rate. 

Because the vehicle-sharing platform will hold some discount activities at certain time such as 

promotions. The lower average discount rate corresponds to more use times. The number of 

times that customer has used the driver recently (R) is low, the driving frequency (F) is high, 

and the driving mileage (M) is high, and the member time (L) is long. They are the ideal 

customer type and loyal customers of the vehicle-sharing platform, making the largest 

contribution to the operation of the vehicle-sharing platform, but the smallest proportion 

(3.10%). 

 Important development-customer: Although these members have a short membership time (L), 

they have short R and driving range (M) and driving frequency (F) are relatively large, 

accounting for 29.59% of the total. 

 Important retention-customer: These customers have a long membership time (L), a long R, 

but the total mileage (M) and driving times (F) are not low, accounting for (15.86%) which 

indicates the need for retain such customers. We should analyse why they have recently not 

use the service, and need to maintain more interaction with the customers. 

 General customers and low-value customers: Such customers have not driven for a long time. 

Number (F) or mileage (M) less, accounting for (51.45%). 

According to the characteristics of each customer type, customer value ranking of various customer 

groups, the results shown in Table 7. 

Table 7. Customer Group Value Ranking 
   

Customer group   Ranking Ranking  meaning 

3 1 important maintain-customer 

1 2 important development-customer 

5 3 important maintain-customer 

2 4 general customer 

4 5 low value customers 

5. Discussions and Limitations 

The model proposed in this paper uses historical data modelling, with the change of time, the 

observation window of the analysis data is also changing. Therefore, it is recommended that the model 

should be run once a month considering the details of new customers and the actual situation of the 

business to judge clustering centre of new customers. Meanwhile, the characteristics of new customers 

are analysed. If the actual situation of incremental data and the results of the judgments vary widely, 
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you need to focus on the business department to see the reasons for the changes and to confirm the 

stability of the model. If the stability of the model varies greatly, the model needs to be retrained to 

adjust. 

6. Conclusion 

This paper builds a reasonable customer value segmentation model K-LRFMD based on the shared 

transportation platform. Based on the improved K-means algorithm, Customers are clustered and 

divided into five types. We established customer segmentation table for customer value analysis, and 

put forward the corresponding marketing strategy. Empirical studies show that the proposed model 

and improved algorithm can effectively classify customers in shared transportation filed and 

differentiate between valueless and high value customers. The proposed K-LRFMD can also be 

extended to other areas such as aviation customer value segmentation, bank customer value 

segmentation and so on. 
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